107,900 research outputs found

    Optimization of Track Etched Makrofol Etching Conditions for Short-term Exposure Duration

    Get PDF
    AbstractExposure time of nuclear track detectors at humid environments is normally limited to a few weeks because filter used to avoid humidity is not completely waterproof and, after several months, some parts of detector start to degrade. In other really extreme measurement conditions, like high aerosol content, high or low temperatures, etc., the exposure time also requires a reduction. Then detector detection limit becomes a problem, unless radon concentrations were high. In those cases where radon levels are not high enough a better detection efficiency is required. In our laboratory we use passive detectors based on the track etched Makrofol DE foil covered with aluminized Mylar and they are analyzed by means of an electrochemical etching. Our standard etching conditions allow analyzing detectors generally exposed for periods between three and six months. We have optimized our etching conditions to reduce the exposure time down to a month for common radon concentration values

    Modeling sunspot and starspot decay by turbulent erosion

    Get PDF
    Disintegration of sunspots (and starspots) by fluxtube erosion, originally proposed by Simon and Leighton, is considered. A moving boundary problem is formulated for a nonlinear diffusion equation that describes the sunspot magnetic field profile. Explicit expressions for the sunspot decay rate and lifetime by turbulent erosion are derived analytically and verified numerically. A parabolic decay law for the sunspot area is obtained. For moderate sunspot magnetic field strengths, the predicted decay rate agrees with the results obtained by Petrovay and Moreno-Insertis. The new analytical and numerical solutions significantly improve the quantitative description of sunspot and starspot decay by turbulent erosion

    Synchronization of interconnected networks: the role of connector nodes

    Full text link
    In this Letter we identify the general rules that determine the synchronization properties of interconnected networks. We study analytically, numerically and experimentally how the degree of the nodes through which two networks are connected influences the ability of the whole system to synchronize. We show that connecting the high-degree (low-degree) nodes of each network turns out to be the most (least) effective strategy to achieve synchronization. We find the functional relation between synchronizability and size for a given network-of-networks, and report the existence of the optimal connector link weights for the different interconnection strategies. Finally, we perform an electronic experiment with two coupled star networks and conclude that the analytical results are indeed valid in the presence of noise and parameter mismatches.Comment: Accepted for publication in Physical Review Letters. Main text: 5 pages, 4 figures. Supplemental material: 8 pages, 3 figure

    Relay synchronization in multiplex networks of discrete maps

    Full text link
    Complex multiplex networks consist of several subnetwork layers, which interact via pairwise inter-layer connections. Relay synchronization between distant layers which are not directly connected, but only via a relay layer, can be observed in multiplex networks. We study three-layer networks of discrete logistic maps, where each individual layer is a nonlocally coupled ring, and demonstrate scenarios of relay synchronization of complex patterns in the outer layers which interact via an intermediate layer. We find regimes of relay synchronization for chimera states, i.e., patterns of coexisting coherent and incoherent domains, and a transition from phase chimeras to amplitude chimeras for increasing inter-layer coupling. We determine analytically the approximate critical coupling strengths for the existence of phase chimeras

    A Chart System of Presenting Sociometric Data

    Full text link
    Thesis (M.B.A)--Boston University N.B.: Page 64 is misnumbered as page 65

    A Chart System of Presenting Sociometric Data

    Full text link
    Thesis (M.B.A)--Boston University N.B.: Page 64 is misnumbered as page 65

    Robust exact differentiators with predefined convergence time

    Full text link
    The problem of exactly differentiating a signal with bounded second derivative is considered. A class of differentiators is proposed, which converge to the derivative of such a signal within a fixed, i.e., a finite and uniformly bounded convergence time. A tuning procedure is derived that allows to assign an arbitrary, predefined upper bound for this convergence time. It is furthermore shown that this bound can be made arbitrarily tight by appropriate tuning. The usefulness of the procedure is demonstrated by applying it to the well-known uniform robust exact differentiator, which the considered class of differentiators includes as a special case

    The frequency spectrum of finite samples from the intermittent silence process

    Get PDF
    It has been argued that the actual distribution of word frequencies could be reproduced or explained by generating a random sequence of letters and spaces according to the so-called intermittent silence process. The same kind of process could reproduce or explain the counts of other kinds of units from a wide range of disciplines. Taking the linguistic metaphor, we focus on the frequency spectrum, i.e., the number of words with a certain frequency, and the vocabulary size, i.e., the number of different words of text generated by an intermittent silence process. We derive and explain how to calculate accurately and efficiently the expected frequency spectrum and the expected vocabulary size as a function of the text size.Peer ReviewedPostprint (author's final draft

    Time Spent Working in Custody Influences Work Sample Test Battery Performance of Deputy Sheriffs Compared to Recruits

    Get PDF
    This study determined the influence of years spent working in custody on fitness measured by a state-specific testing battery (Work Sample Test Battery; WSTB) in deputy sheriffs. Retrospective analysis was conducted on one patrol school class (51 males, 13 females) divided into three groups depending on time spent working in custody: DS24 (<24 months; n = 20); DS2547 (25–47 months; n = 23); and DS48+ (≥48 months; n = 21). These groups were compared to a recruit class (REC; 219 males, 34 females) in the WSTB, which comprised five tasks completed for time: 99-yard (90.53-m) obstacle course (99OC); 165-pound (75-kg) dummy drag; six-foot (1.83-m) chain link fence (CLF) and solid wall (SW) climb; and 500-yard (457.2-m) run (500R). A univariate analysis of covariance (ANCOVA) (controlling for sex and age) with Bonferroni post hoc determined significant between-group differences. DS48+ were slower in the 99OC compared to the REC (p = 0.007) and performed the CLF and SW slower than all groups (p ≤ 0.012). DS24, DS2547, and DS48+ were all slower than REC in the 500R (p ≤ 0.002). Physical training should be implemented to maintain fitness and job-specific task performance in deputy sheriffs working custody, especially considering the sedentary nature of this work

    Non-reciprocal few-photon devices based on chiral waveguide-emitter couplings

    Full text link
    We demonstrate the possibility of designing efficient, non reciprocal few-photon devices by exploiting the chiral coupling between two waveguide modes and a single quantum emitter. We show how this system can induce non-reciprocal photon transport at the single-photon level and act as an optical diode. Afterwards, we also show how the same system shows a transistor-like behaviour for a two-photon input. The efficiency in both cases is shown to be large for feasible experimental implementations. Our results illustrate the potential of chiral waveguide-emitter couplings for applications in quantum circuitry.Comment: Mathematica notebook attached for calculation of detection probabilitie
    corecore